Postnikov “ Invariants ” in 2004
نویسنده
چکیده
The very nature of the so-called Postnikov invariants is carefully studied. Two functors, precisely defined, explain the exact nature of the connection between the category of topological spaces and the category of Postnikov towers. On one hand, these functors are in particular effective and lead to concrete machine computations through the general machine program Kenzo. On the other hand, the Postnikov “invariants” will be actual invariants only when an arithmetical decision problem – currently open – will be solved; it is even possible this problem is undecidable. 2000 Mathematics Subject Classification: 55P15, 55S45, 55U40, 55-04.
منابع مشابه
Se p 20 04 Postnikov Invariants of Crossed Complexes
We determine the Postnikov Tower and Postnikov Invariants of a Crossed Complex in a purely algebraic way. Using the fact that Crossed Complexes are homotopy types for filtered spaces, we use the above " algebraically defined " Postnikov tower and Postnikov invariants to obtain from them those of filtered spaces. We argue that a similar " purely algebraic " approach to Postnikov invariants may a...
متن کاملPostnikov invariants of crossed complexes
We determine the Postnikov tower and Postnikov invariants of a crossed complex in a purely algebraic way. Using the fact that crossed complexes are homotopy types for filtered spaces, we use the above “algebraically defined” Postnikov tower and Postnikov invariants to obtain from them those of filtered spaces. We argue that a similar “purely algebraic” approach to Postnikov invariants may also ...
متن کاملPostnikov Extensions of Ring Spectra
We give a functorial construction of k-invariants for ring spectra, and use these to classify extensions in the Postnikov tower of a ring spectrum.
متن کاملSymmetries of Gromov-Witten Invariants
The group (Z/nZ) is shown to act on the Gromov-Witten invariants of the complex flag manifold. We also deduce several corollaries of this result.
متن کاملar X iv : 0 90 8 . 33 93 v 1 [ m at h . A T ] 2 4 A ug 2 00 9 CAN ONE
We compare the classical approach of constructing finite Postnikov systems by k-invariants and the global approach of Dwyer, Kan, and Smith. We concentrate on the case of 3-stage Postnikov pieces and provide examples where a classification is feasible. In general though the computational difficulty of the global approach is equivalent to that of the classical one.
متن کامل